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AbafmcC The rxeland-uaiseo mmqement of ally1 fluonwrcetattswaseffectedbyheabnentofthe 
~g~~~~~yl~~~~~~~ Themve 
formation of the pmducts was rationalized asresulting~fromequilibralion of the skaeochemky of 
the silyl ester flucts under the Ieaction coiuiitions. 

The keland-Uaisen xearrangmt is a pow&d tool for acyclic ~~l~~f~~~ 

applications in organic synthesk t-3 The effect of fbxxine on this seaIraoge4IxaItV and on [331 sigmatmpic 

~~~~~~~&to ~~~~~. Thesameefktive sknxcontml is possible in tluorinated 

systems as in hydmuubon systems and has made this an impoxtant tool forpqarative organofltxnin~ 

chemistry t t-14 

In our pnvious woxic however, the reactive silylketene acetal was formed by a rearrangement of a C- 

silylated mataial which was pqued by tmatmqt of the lithium enohue of the appmIaiate fluomaceWe with 

chlorohGnethylsilane. While bre s&reoselectivity of the C,O-silyl @g@on was mmukable, synthetic 

application of the rearrangement was problema&. Undex conditions which favored higher yields the presence of 

any Excel base in the reaction mixtum was suf%ient to degmde the stenxMecti* of the process, presumably 

by epimerization of product u-fluorinated acids. Use of a closer to stoichiometk amount of base always 

resulted in signScantly F yields. In order to use this xearrangement axweniently in synthesis we sought 

anew~u~~~~~~e~ve~~~ 
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Table 1. I&nd-Qaisen Retman-t of Ally1 Fluarc#uxtates. 

R RI Tlialkylsilyl Reaction Ratio 3 : 4a Yield (%)b 

mflale 

H Me Me+XiO$F~ i&xc 3 :l >95 

H Me Me3SiOS0,CF~ roomtagsahlnd ‘S.k:l, . 85 

H Me Me~Si~O~~~ ale 4.6: 1 70 

H Me Et$iOSO2cp3 mfhlxc 2.5 : 1 50 

H Me Et$iOSO$!F~ momtanpaatme 4:l 90 

H Me i-p13siOSO#Fs &fiuxc 6.3 : 1 83 ,, ” 

H Me i-PfJ3iOS02CF~ momtempmt& 8 :l >95 

H Me ~-Bu~e)~SiOSO*~~ momtc!z#mm 3.7 : 1 92 

H Me t-Hexyl(Me)~SiOSO~CF~ roomtanpmtm 6:l 40 

Me H i-R$iOSO cp3 -lanpaatan 1 :15 L-95 

a. DeUed by 19F NMR. b. Isolated p&&c&. c; Reacticms were heated under mflux ih ~chl~~~~e 

solution for 15 h. d. Reactions w&e allokd to stir at room tempemm for 72 hi e. Diisopropykthylamine 

was used 

Isolation of the inmmdikte sllyketene a&al w&i not possibk under the reaction cm&ions. The treatment of 

ethyl a-bso- ~~~~YIjpacMongt~ta_drtHt&noeof~~at_40OC~~~ 

been reported to exclusively form the (Z&$ilyketc& acetaLl Howevm it also had been ported that triethylsilyl 

triflate was not sucmsful in mctions to form tiylkekne acctals under tfiese ~ondltions.~~ It has been shown 

that while treat&t oi&-2-butenyl @,&~lrifl uompqmnoate yields lmxiucts deIived fkom [3,3]-sigmatropic 

rearmngement it does so with poor dktmmelectlvity, pnzsumably as a xesult of nonstereostlective enolization,6 

yet treatment of 2-butenyl ~u~~~~~ under the ~~ adds pro&& Hiith excellent 

stemocontml.** In the &seize of a sterlc effect hy fluofi& tht stereo&n&al Canwlih the formation of 

silylketeoe acetals derived fiwi allyIfluor&ceta#& ma~‘result fimn the ihtluence of the stereoelectronic control 

of the acyclic tmnsition state c&fbm&m likely involved in foktion of the mctiNkilylkme.s.t But, the 

influence of the sterk demaod of silylating nagelrt oNthe stmm&&ity of the rem&is then diffimlt to 

lationalii. The~~1;T‘dre~fmpmvesiir’ihebi(ierdiffJdpropyfsilylrfY~ 

dimcthyl-ren"hexylsily1 > trimethylslly~ II trlethyls’ilyl. kmatsing stmlc demand favom inuwsed 

stereoselectivity on fommtion of the pmduct. 

We propose that the stmmelectivity of the process,ms&s from diffbin transition Fte energies . . 
along the m&ion coordinate to form the mactive silylkctqno &tal, whiih on f&&on undeqces the rapid 
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The product 2-flu~~~~yl-~t-3~i~ acids aie useful building bloc+5 for the synthesis of flu~a~ 

carbohydrates and nucleosidcs. ‘Our preparation of these materUs will be nqorted latcx.t6 
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